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ABSTRACT

Ensemble postprocessing is frequently applied to correct biases and deficiencies in the spread of ensemble

forecasts. Methods involving weighted, regression-corrected forecasts address the typical biases and under-

dispersion of ensembles through a regression correction of ensemblemembers followed by the generation of a

probability density function (PDF) from the weighted sum of kernels fit around each corrected member. The

weighting step accounts for the situation where the ensemble is constructed from different model forecasts or

generated in some way that creates ensemble members that do not represent equally likely states. In the

present work, it is shown that an overweighting of climatology in weighted, regression-corrected forecasts can

occur when one first performs a regression-based correction before weighting each member. This over-

weighting of climatology results in an increase in the mean-squared error of the mean of the predicted PDF.

The overweighting of climatology is illustrated in a simulation study and a real-data study, where the refer-

ence is generated through a direct application of Bayes’s rule. The real-data example is a comparison of a

particularmethod referred to as Bayesianmodel averaging (BMA) and a direct application of Bayes’s rule for

ocean wave heights using U.S. Navy and National Weather Service global deterministic forecasts. This direct

application of Bayes’s rule is shown to not overweight climatology and may be a low-cost replacement for the

generally more expensive weighted, regression-correction methods.

1. Introduction

Ensemble prediction methods are now ubiquitous in

weather and climate prediction. Multiple forecast sim-

ulations are generated, typically initialized with distinct

model states that approximate draws from the distri-

bution of analysis uncertainty. Effects of model imper-

fections on forecast uncertainty may be simulated

through the use of multiple forecast models, multiple

parameterization suites, a diversity of constants in the

parameterizations, and/or stochastic prediction tech-

niques. While ensemble weather prediction systems

have improved greatly, the predictions are still fre-

quently affected by systematic errors, including biased

ensemble mean forecasts and often an insufficiency of

ensemble spread. Consequently, much attention has

been paid in recent years to statistical postprocessing

techniques, whereby the current guidance is adjusted

based on relationships noted between past forecasts and

observations/analyses. In many circumstances, the goal

is to produce a probability density function (PDF) that is

as sharp as possible while remaining reliable (Gneiting

et al. 2007).

Many approaches have been proposed for

statistical postprocessing of ensemble forecasts. Non-

homogeneous Gaussian regression (NGR; Gneiting

et al. 2005) assumes an underlying Gaussian distribution

for the posterior and estimates a state-dependent mean

and spread of the distribution using the ensemble mean
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and spread as predictors. Forecast analogs (Hamill and

Whitaker 2006; Delle Monache et al. 2013; Hamill et al.

2015) have been demonstrated to work well with large

training sample sizes.

Other methods, however, approach the postprocess-

ing problem, either explicitly or implicitly, as a problem

in kernel density estimation (KDM). In these methods,

kernels are placed at predetermined values of the vari-

able to be postprocessed in order to enhance the en-

semble size and/or smooth the resulting shape of the

PDF for probabilistic forecasting. Examples of such

methods include ensemble dressing (Roulston and

Smith 2003; Wang and Bishop 2003; Fortin et al. 2006),

which increases the ensemble size and spread by adding

synthetic new ensemble members centered on existing

or adjusted member forecasts; Bayesian model averag-

ing (BMA; Raftery et al. 2005, hereafter R05; Wilson

et al. 2007); and related techniques like ensemble kernel

density model output statistics (EKDMOS; Glahn et al.

2009) and ensemble regression (Unger et al. 2009),

which statistically adjust raw ensemble forecast guid-

ance and produce PDFs through a weighted sum of

kernels centered on the adjusted forecasts.

In BMA, the postprocessing takes place in multiple

steps, following R05. If members have exchangeable

errors, then this first step has been applied in several

different ways: regression correction on the ensemble

mean (Hamill 2007), bulk bias removal (Wilson et al.

2007), and separate regression corrections of each

forecast (R05; Fraley et al. 2010). If members do not

have exchangeable error statistics, then linear regression

corrections are commonly applied individually to each

member. The second step of BMA is the application of

kernels to each weighted member. R05 made the im-

plicit assumption that regression-corrected forecasts

were similar in quality, so that the kernel standard de-

viation could simply be set to the same value for each

forecast. With regression-corrected forecasts of very

different quality, different kernel standard deviations

are possible. In R05, the weights for each forecast and

the kernel width were estimated with expectation-

maximization methods (EM; Dempster et al. 1977 and

references therein), though Vrugt et al. (2008) also

showed that Markov chain Monte Carlo methods can

also be used.

Since R05, there have been a number of critiques of

BMA and related methods. Hamill (2007) discussed

issues related to overfitting and Bishop and Shanley

(2008) discussed issues with extreme forecasts. Wilks

(2006) critiqued techniques like BMA that regress

each member, demonstrating that for longer-lead

forecasts, there is a tendency for the regressed

values to coalesce toward a single number related to

the climatology. In such a situation, BMA typically fits

wide kernels to make up for the loss of spread in the

original ensemble.

In this manuscript, we show that when a weighting on

each member is applied after a regression correction,

and to nonexchangeable ensemble members, a new

problem arises that has not yet been thoroughly dis-

cussed in the literature. Namely, techniques of this form

will not produce the minimum-error variance estimate

of the mean that could be obtained from the direct ap-

plication of Bayes’s rule; they overweight the climato-

logical information, resulting in suboptimal forecast

skill. To be clear, by ‘‘overweighting’’ we are referring to

placing the postprocessed ensemble too close to the

climatological mean. We will show several examples,

from simple models to real data, in which the post-

processed ensemble obtained from a weighted, re-

gression correction on each member is too close to the

climatological mean such that the mean of the post-

processed ensemble does not deliver the minimum error

variance estimate. This property of overweighting is not

to be confused with a desirable (and correct) property

of a postprocessed ensemble: as forecast skill decreases

the mean of the postprocessed ensemble should con-

verge to the climatological mean. In the following, we

use the term overweighting to refer to any deviation

from the correct weighting on the climatological mean.

In addition, we present an alternative approach that

can be considered a direct application of Bayes’s rule.

This approach does not rely on an explicit regression,

but rather relies on accurately fitting the dataset to the

appropriate distributions required by Bayes’s rule.

Previous work has illustrated a direct application of

Bayes’s rule in statistical postprocessing, For example,

Krzysztofowicz and Evans (2008) introduced the

Bayesian processor of forecasts (BPF), whereby clima-

tological data transformed to a normal distribution

provides the prior. This prior was updated based on a

PDF estimated through a correction of the current

forecast using regression relationships estimated

from transformed forecast and observational data.

Other Bayesian techniques in postprocessing include

Rajagopalan et al. (2002) and Luo et al. (2007). Our

approach can be considered an application of the BPF of

Krzysztofowicz and Evans (2008), in that this work ex-

tends the BPFmethod to the ensemble case and directly

accounts for correlation through the chain rule of

probability. In addition, we carefully detail a procedure

to construct likelihoods based on a function that maps

the true state to the forecast.

We also highlight the fact that weighted, KDM

methods suffer from an overweighting of climatology

and the direct application of Bayes’s rule does not. To
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test the hypothesis of KDM suboptimality when a re-

gression correction is applied before the KDM fitting

procedure, we first choose one of the most popular

KDMs as a reference. Henceforth, we focus upon the

behavior of BMA, but nevertheless remind the reader

that the methods of Glahn et al. (2009) and Unger et al.

(2009) should perform similarly. We will first construct a

hypothetical scenario of two forecasts that are purposely

constructed to lack the correct climatological behavior

that random draws from the true distribution would

have. In this situation these forecasts should benefit

from statistical postprocessing that involves convolving

them with climatological information. Because Bayesian

methods provide the optimal combination of in-

formation, we then examine whether or not the mean

of the posterior estimated from BMA is equivalent to

themean estimated from a direct application of Bayes’s

rule, which provides the minimum error-variance esti-

mate (section 2). Section 3 illustrates in detail how to

perform direct Bayesian estimation to be used as a

control postprocessing method in the further evalua-

tion of BMA. This method extends the BPF concepts to

work with ensemble data, allowing for members to be

equally or unequally likely and accounting for possible

correlation between members. Section 4 discusses is-

sues related to the size of training dataset; there are

challenges with both BMA and Bayesian processing

related to the ‘‘curse of dimensionality’’ (Bellman

2003). In section 5, we compare BMA to a Bayesian

method through a real-data study, a prediction of ocean

wave height based on deterministic global weather

forecasts from two operational forecast centers. The

Bayesian process in this case will include an additional

step, the log transformation of the data; this renders the

data more Gaussian before the analytic evaluation

through Bayes’s rule. Section 6 provides some discus-

sion and conclusions.

2. Differences in the weighting of climatology in
Bayes’s rule and BMA

In this section we consider the similarity of BMA and

related algorithms to a direct application of Bayes’s rule.

Differences are examined by considering the smallest-

possible ensemble, two forecasts, under the simplest of

possible assumptions, a forecast with data drawn from a

distribution with zero-mean errors. We use this to il-

lustrate the way that BMA will result in an over-

weighting of climatological information.

Specifically, imagine that the true state for the physi-

cal system under consideration to be drawn from a

‘‘climatological’’ pdf we label, p(x), with the property

that x is a random variable drawn from a Gaussian

defined as N (m, P). We have available Nf 5 2 unbiased

forecasts of today’s true state, x 5 xt:

x
f
5

"
x1f

x2f

#
5

�
x
t
1 «

1

x
t
1 «

2

�
. (2.1)

The perturbations «1 and «2 ;N (0,R), that is, the errors

have zero mean and are Gaussian distributed with a 23
2 covariance matrix R. The nth diagonal element of R is

denoted as rn, and the covariance between the errors in

the two forecasts will be denoted as r. Equation (2.1)

implies that p(xf j x) is alsoGaussian with the statistics of

the perturbations N (xt1, R), where 1 is the one vector

with length Nf. This experimental design is admittedly

simpler than what often occurs in actual weather pre-

diction; here forecasts are assumed to have zero bias and

no state-dependent error. The simple design here makes

the underlying issue with KDMs easy to explain because

we have the true posterior available as reference.

a. Bayesian solution

By Bayesian solution we mean in this section that we

evaluate, using the correct components of Bayes’s rule,

the formula for the conditional density. We will hereafter

take this expression as the correct answer and evaluate

BMAwith regards to its ability to recreate this expression.

A straightforward application of Bayes’s rule would

take the following form:

p(x j x
f
)5

p(x
f
j x)p(x)

p(x
f
)

, (2.2)

where p(xf ) is ;N (m1, PI1R). Deriving the posterior

for this simple problem can be done analytically in

several ways. In appendix A we show how to minimize

the error variance around a weighted linear estimator

[as in Eq. (2.3a)], which delivers the mean and variance

of the posterior for this problem. One then obtains that

p(x j xf ) is N (xBayes, Q) with

x
Bayes

5w
1
x1f 1w

2
x2f 1w

3
m , (2.3a)

Q5w
3
P . (2.3b)

The weights are

w
1
5

r
2
2 r

r
1
1 r

2
2 2r1

r
1
r
2
2 r2

P

(2.4a)

w
2
5

r
1
2 r

r
1
1 r

2
2 2r1

r
1
r
2
2 r2

P

(2.4b)

w
3
5 12w

1
2w

2
. (2.4c)
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These weights deliver the minimum-error variance es-

timate and show how the relative weight between the

forecasts and climatology is determined in Eq. (2.3a). It

is important to realize that while these weights do sum to

one as seen in Eq. (2.4c), it is not correct to interpret

these weights as probabilities. In fact, we will show be-

low that these weights can individually be larger than

one and can even be negative. Equations (2.3b) and

(2.4c) show that the error variance of the posterior mean

in Eq. (2.3a) is simply a fraction of the climatological

variance P; the weight applied to P is comparatively

small when the sum of weights for the original forecasts

is close to one, which happens when forecast-error var-

iances r1 and/or r2 are ,,P.

b. Bayesian model averaging

Here we derive the BMA weights for this same

problem following R05. Equation (2) in that article

states that for this experimental design

p(x j x1f , x2f )5m
1
g(x j x1c)1m

2
g(x j x2c) . (2.5)

The xnc are statistically postprocessed forecasts that are

created by separately regressing truth against each

forecast to obtain coefficients a and b, such that

xnc 5 a
n
xnf 1 b

n
. (2.6)

The kernel associated with the nth regression-corrected

forecast is thus

g(x j xnc )5
1ffiffiffiffiffiffi
2p

p
s
exp

"
2
1

2

(x2 xnc )
2

s2

#
. (2.7)

The weights mn and the kernel width parameter s are

commonly estimated using the EM algorithm

(Dempster et al. 1977). This method can be extended to

nonnormally distributed variables [as in the Gamma-

distribution kernels for quantitative nonzero pre-

cipitation of Sloughter et al. (2007); also see the current

section 6] or to bivariate distributions [e.g., wind com-

ponents in Sloughter et al. (2010)]. As discussed in

Fraley et al. (2010), for the case of ensemble forecasts

designed to be exchangeable, the forecast regression

coefficients and BMA weights should be constrained to

be equal. In the present situation, we omit the re-

finement of s through CRPS minimization as discussed

by R05 as the value of s is not the determining factor in

the results to be presented below. We do note that if

r1,, r2 or vice versa, the assumption of a single value of

s is a further approximation, and ideally the EM pro-

cedure should fit different values for each member. We

have rerun the experiments of this section with a

modified EM procedure that obtained different s values

for unequally likely forecasts and found that this only

affects the weights w1 and w2 slightly, and definitely not

by enough to explain the difference in BMA and the

Bayesian technique.

The regression coefficients in Eq. (2.6) are

a
n
5

P

P1 r
n

, (2.8a)

b
n
5

r
n

P1 r
n

m , (2.8b)

assuming a training set of infinite length. These can also

be experimentally verified through regression analysis.

By inspection, the regressed forecast is simply a

weighted linear combination of the original forecast and

the climatological mean. We will see next that setting

the weight with respect to the climatological mean here

in Eqs. (2.8a) and (2.8b) is significant as the relative

weighting between climatology and each forecast has

now been fixed.

Recall that the BMA mean is simply

x
BMA

5m
1
x1c 1m

2
x2c . (2.9)

This implies that by using Eqs. (2.6), (2.8a), and (2.8b),

we may write the BMA mean estimate as in Eq. (2.3a):

x
BMA

5wb
1x

1
f 1wb

2x
2
f 1wb

3m , (2.10)

where

wb
1 5m

1

P

P1 r
1

, (2.11a)

wb
2 5m

2

P

P1 r
2

, (2.11b)

wb
3 5m

1

r
1

P1 r
1

1m
2

r
2

P1 r
2

, (2.11c)

m
1
1m

2
5 1. (2.11d)

The question we wish to answer in this section is

whether or not the weights in Eqs. (2.4a)–(2.4c) are equal

to Eqs. (2.11a)–(2.11c). In order for Eqs. (2.4a)–(2.4c) to

equal Eqs. (2.11a)–(2.11c) theEMalgorithmmust choose

the weightsm1 andm2 appropriately. Note, however, that

this amounts to setting the weights wb
1 , w

b
2 , w

b
3 equal to

their counterparts in Eqs. (2.4a)–(2.4c) by solving for m1

and m2. This turns Eqs. (2.11a)–(2.11d) into four equa-

tions in two unknowns (i.e., the system is over-

determined). This suggests that Eqs. (2.11a)–(2.11c)

cannot in all circumstances produce the Bayesian weights

and therefore the BMA mean, Eq. (2.10), cannot prop-

erly produce the minimum error variance estimate.
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c. A first look

This section will focus on forecasts with properties

that allow one to analytically derive the basic ideas of

this manuscript in their simplest form. Here, the fore-

casts are assumed to be equally likely and have un-

correlated errors. We fully realize that this is not a

realistic model of the errors for an ensemble of weather

predictions, especially short-lead predictions; in such

situations the forecast errors are likely to have some

correlation.We do this because this simplemodel allows

us to extract the behavioral characteristics of the algo-

rithms in the most insightful way. Section 2d will

examine a more general situation numerically to show

the more general aspects of these results.

If one could be absolutely certain that therewas no bias

in the collection of forecasts in Eq. (2.1) it might seem as

though not performing the ‘‘bias correction’’ stage in

BMA would be sensible. In fact, this is not true. If one

were to perform the BMA algorithm of section 2b with-

out the first-stage bias correction then the resulting mean

would simply be the weighted average of the forecasts:

x
BMA1

5m
1
x1f 1m

2
x2f . (2.12)

Note that we would also obtain Eq. (2.12) in the case

where we simply performed a ‘‘bulk-bias’’ correction

(Wilson et al. 2007) on each forecast because these

forecasts have no bulk bias.

For simplicity, let us imagine that these two forecasts are

of equal quality (with error variance equal to r) and un-

correlated. In this case, we know the result of the EM al-

gorithm would be thatm1 5m2 5 1/2. Hence, this version

ofBMAresults in the arithmeticmean of the two forecasts

and the entire disregard of the information provided by

the climatological prior. Note that this result that Eq.

(2.12) disregards the climatological prior is true evenwhen

the forecasts are correlated and unequally likely.

The error variance of Eq. (2.12) is then

Q
BMA1

5
r

2
(2.13)

Note, however, that in this same case the Bayesian result

in Eq. (2.3a) would be

x
Bayes

5w
1
x1f 1w

2
x2f 1w

3
m , (2.14)

where the weights are

w
1
5w

2
5

P

2P1 r
, (2.15a)

w
3
5

r

2P1 r
. (2.15b)

The error variance of the Bayesian result in Eq. (2.14) is

Q
Bayes

5
r

2P1 r
P . (2.16)

An examination of Eqs. (2.13) and (2.16) shows that

Q
Bayes

#Q
BMA1

(2.17)

with equality in the limit as r/ 0 [i.e., when it is rea-

sonable to ignore climatology then Eq. (2.12) is a rea-

sonable choice]. Therefore, the Bayesian result is

superior to the BMA result without the first-stage bias

correction.

Perhaps a more interesting comparison, however, is to

compare Eq. (2.12) to the BMA result where a bias

correction is applied even though we have constructed a

scenario where there is no bias in the forecasts:

x
BMA2

5wb
1x

1
f 1wb

2x
2
f 1wb

3m , (2.18)

where

wb
1 5wb

2 5
1

2

P

P1 r
(2.19a)

wb
3 5

r

P1 r
(2.19b)

and again we used the fact that the result of the EM

algorithm will bem1 5m2 5 1/2. Note that in the limit as

r/ 0 that Eq. (2.18) is identical to Eq. (2.12). A direct

comparison of Eqs. (2.15b) and (2.19b) reveals that

wb
3 $w3, which implies an overweighting of climatology.

Using Eqs. (2.19a) and (2.19b) in Eq. (2.18) obtains

the following:

x
BMA2

5
P

P1 r
x
BMA1

1
r

P1 r
m . (2.20)

Hence, performing the bias correction has led to the

BMA mean being a weighted average of Eq. (2.12) and

the climatological mean. Note that the error variance of

Eqs. (2.18) and (2.20) is

Q
BMA2

5

�
P

P1 r

�2
r

2
1
� r

P1 r

�2
P . (2.21)

In Fig. 1 we present the error-variance curves of the

three state estimates examined in this section. The most

important feature of this figure is that the version of

BMA that incorporates the first stage bias-correction

step is always better (in the sense of smaller error vari-

ance) than the version that does not, even though this set

of forecasts is unbiased. The reason it is preferable to

‘‘bias correct’’ in the BMA method even when the
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forecasts are known to be unbiased is because this first

stage of BMA is there to include climatological in-

formation from the prior. This first-stage correction step

in BMA is crucial to getting the climatology into the

mean of the estimated PDF, but nevertheless as we have

shown the weight on the climatological mean is too

great. This overweighting occurs because this two-stage

version of BMA is attempting to approximate the mul-

tipredictor regression in Eq. (2.14) by first performing

two unipredictor regressions as in Eqs. (2.8a) and (2.8b)

and then weighting according to Eqs. (2.19a) and

(2.19b). This approximation of multipredictor re-

gression by weighted, unipredictor regressions is sub-

optimal and results in incorrect weights for the forecasts

and climatology.

d. Numerical examination of Bayesian and BMA
methods for two synthetic forecasts

We now demonstrate the extent to which BMA

overweights climatology when only two forecasts are

available. Further, we quantify how much the error in

the state estimate is increased by this overweighting of

climatology. The analytically derived Bayesian and the

BMAEM-estimated weights are shown in Figs. 2 and 3,

along with the differences in weights. In the construc-

tion of Figs. 2 and 3, a training sample of size 105 was

used for the regression and EM used in BMA, and

simulated forecasts and true values were generated

consistent with Eq. (2.1) and the associated text.

Samples of forecasts with correlated errors were gen-

erated following the methodology of Houtekamer

[1993, see his Eq. (13)].

Figure 2 demonstrates several interesting differences

between Bayesian and BMA weights. At high correla-

tions between forecasts (Figs. 2c,f,i), the optimal

weighting for the Bayesian forecasts is sometimes neg-

ative, while BMA constrains the weights to be positive.

Consequently, at high correlations, there are large dif-

ferences in the weight applied to the first forecast be-

tween Bayes and BMA; the differences are smaller with

lower correlations between forecasts (Fig. 2g). The

corresponding weights applied to climatology and their

BMA-Bayesian differences are shown in Fig. 3. For

lower correlations between forecast errors, Bayesian

and BMA methods provide similar weights to clima-

tology when one or both of the forecasts is relatively

accurate (Fig. 3g). For high correlation between the

forecasts, there are also similar weights when the fore-

casts have nearly equal magnitudes of error variances

(Fig. 3i). On the other hand, at zero correlation between

forecasts, when both forecasts have moderate or large

error variances, BMA overweights climatology by a

substantial amount, in excess of 10% in many circum-

stances (Fig. 3g). At very high correlations between

forecast errors (Fig. 3i), if one forecast is substan-

tially lower in error than the other, climatology is

overweighted.

Does this overweighting increase the errors of the

postprocessed forecasts? To explore this, we reduce the

training sample size to 100 to add realistic sampling er-

rors, similar in magnitude to training samples in R05,

Wilson et al. (2007), and others. We then verify them

with another 100 synthetic forecast and truth samples.

This training and validation procedure was then re-

peated 103 times to generate a large number of simu-

lated Bayesian and BMA forecasts. Figure 4 provides

the root-mean-square error (RMSE) and their differ-

ences. Note two particular situations where BMA is

notably higher in error than direct Bayesian methods.

The first is when there are independent forecasts

(Fig. 4g) and moderate to large error variances. The

second is when the two forecasts have highly correlated

forecast errors, but these errors are significantly differ-

ent in their variances.

It is interesting that the situation where BMA and

the Bayesian result are different depends on r when it

appears that the weights in Eqs. (2.11a)–(2.11c) are

independent of r. Obviously, the impact of r is some-

how implicit in the kernel weights, m1 and m2. How-

ever, the result of the EM algorithm for equally likely

forecasts (and for any value of r) is always

m1 5m2 5 1/2. Therefore, the kernel weights, m1 and

FIG. 1. The error variance for three state estimates: BMA

without the first stage ‘‘bias correction’’ (green), BMAwith the first

stage ‘‘bias correction’’ (red), and the Bayesian weighting (blue).
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m2, are in fact independent of the covariance between

forecasts, r, in the case of equally likely forecasts.

Numerical experiments (not shown) with BMA and

the EM algorithm confirm that the kernel weights, m1

and m2, become a function of the covariance between

forecasts, r, only when the forecasts are not equally

likely. Further understanding may be gained by noting

that for the equally likely case and a correlation of one

that the BMA weights in Eqs. (2.11a)–(2.11c) are

exactly in agreement with the result of regression with

only one predictor. This is the correct answer in this

case and explains why the diagonal of Figs. 2i, 3i, and 4i

shows no difference between the BMA and Bayesian

result. However, as the covariance r decreases the

BMAweights in Eqs. (2.11a)–(2.11c) do not change for

the equally likely case; therefore, they become more

and more in error as the covariance decreases, as can

be seen in Figs. 2–4. Further discussion as to how the

FIG. 2. Weights for the first of two members in a forecast from (a)–(c) Bayes and (d)–(f) BMA. (g)–(i) Weight differences are shown.

Weights and differences are plotted as functions of the ratio of the first forecast’s error variance divided by the climatological variance x,

the second forecast’s error variance divided by the climatological variance y, and the correlation between the two forecasts (the three

columns).
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BMA weights differ from the Bayesian weights for

numbers of forecasts greater than 2 can be found in

appendix B.

3. Direct Bayesian estimation

Section 2 showed that by regressing the forecasts to

the truth and then weighting each with its own kernel

was likely to lead to the wrong relative weight on each

forecast as compared to the Bayesian result. This section

will illustrate a very simple method that does not begin

by regressing the forecasts to the truth and therefore

does not suffer from this issue.

We begin by writing Bayes’s rule again as

p(x j x
f
)5

p(x
f
j x)p(x)

p(x
f
)

. (3.1)

Note that we may use the chain rule of probability to

write the forecast likelihood as

FIG. 3. As in Fig. 2, but here for the weight applied to the climatology. Note that the weight of the second forecast, not shown, is in each

case one minus the weight of the first forecast and climatology.
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p(x
f
j x)5p(x1f j x)p(x2f j x, x1f )⋯ p(xif j x, x1f , x2f , . . . , xi21

f ),

(3.2)

where i 5 1, . . . , Nf , and Nf is the number of forecasts.

Equation (3.2) suggests that we might begin by

creating a succession of likelihoods from each forecast

conditioned on specific other forecasts and truth. We

will illustrate the procedure using Gaussian functions as

representing the likelihoods, but the choice of what

function to use should be made based on consideration

of the characteristics of the dataset. An example of how

to choose these functions will be provided in section 6,

and we present a method to fit generalized Gaussians in

appendix C.

We will assume below that the training set for the

likelihoods consists of Ns pairs of forecasts and their

verification, which may be the analysis from a data as-

similation system or observations. Because Eq. (3.1)

expresses the climatological pdf as separate from the

forecast likelihoods, we may deduce the climatological

FIG. 4. As in Fig. 2, but for RMS errors of the mean for Bayesian and BMA procedures as generated from 1000Monte Carlo experiments,

as described in the text.
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pdf from an archive distinct from our set of truth–

forecast pairs. Being separate, this archive may possi-

bly be larger, and hence we refer to the number of

members in our climatological archive as Nc.

Themethod to create this succession of likelihoods we

use here proceeds as follows. We begin by scanning the

training set for the ordering of the quality of the fore-

casts. We then sort the forecasts from best to worst,

ranked by RMSEs. We start by fitting the best forecast

with a Gaussian distribution:

p(x1f j x)5C
1
exp

(
2
1

2

[x1f 2H
1
(x)]2

R
1

)
, (3.3)

where C1 is simply the normalization for the pdf and

H1(x) is the function that results from regression for

which the truths are the predictors and the x1f are the

predictands. Note that H1(x) is not what is commonly

referred to as ‘‘state-dependent bias correction’’; H1(x)

maps the truth to the forecast, while standard state-

dependent bias correctionmaps the forecast to the truth.

This is important, as the likelihood p(x1f j x) must be the

distribution of x1f , and if one applied a state-dependent

bias correction one would obtain the wrong distribution.

This distinction is critical as this aspect is what allows

this procedure to create realistic distributions for the

likelihoods. The variance R1 is obtained by calculating

the variance across the training set of the difference

between the x1f and the regressed truth fi.e.
[x1f 2H1(x)]g. Additionally, it is important to recognize

that R1 6¼ r1 and that this is true for all forecasts.

This fitting procedure is then extended to the ith

forecast:

p(xif j x, x1f , x2f , . . . , xi21
f )

5C
i
exp

8<
:2

1

2

[xif 2H
i
(x, x1f , x

2
f , . . . , x

i21
f )]2

R
i

9=
;, (3.4)

where the function Hi(x, x
1
f , x

2
f , . . . , x

i21
f ) is simply the

function that results from multivariate regression for

which the predictors are the x, x1f , x
2
f , . . . , x

i21
f and the

predictand is xif . As before, the error variance Ri is

the variance of [xif 2Hi(x, x
1
f , x

2
f , . . . , x

i21
f )] across the

training set.

For completeness, we mention that one could simplify

the succession of products in Eq. (3.2) by noting that

because they are exponential the products can be re-

written as a sum within the exponential function:

p(x
f
j x)5C

1
C

2
⋯C

Nf
exp

�
2
1

2
S

�
, (3.5)

S5
[x1f 2H

1
(x)]2

R
1

1
[x2f 2H

2
(x, x1f )]

2

R
2

1⋯

1
[x

Nf

f 2H
i
(x, x1f , x

2
f , . . . , x

Nf21

f )]2

R
Nf

. (3.6)

After all the forecast likelihoods have been created

we must now create the climatological PDF, p(x).

There are at least two ways to do this. The first way is to

simply fit the climatological distribution to the char-

acteristics of the climatological archive. For example,

we may calculate the mean x and variance P of the Nc

members of the distribution of the truth across our

archive. This information allows us to simply fit the

climatological pdf as

p(x)5C
c
exp

"
2
1

2

(x2 x)2

P

#
. (3.7)

Once Eq. (3.7) is determined all the information to

evaluate Eq. (3.1) has been obtained and therefore the

posterior pdf can simply be evaluated for whatever

probabilistic prediction is required. Another method is

to use kernel density estimation on the climatological

distribution and is discussed in appendix D.

The appropriateness of the choice between fitting

climatology to a function or representing it with a kernel

density method, such as the method described in ap-

pendix D, usually comes down to the size of the training

set. If the training set is very small (less than 100 sam-

ples), then one is likely to do better by simply fitting the

climatological distribution to some known function with

reasonably accurate characteristics. Given a relatively

larger climatological training sample (hundreds or

more) one could effectively employ the kernel density

algorithm using either Gaussian kernels or Dirac delta

kernels (i.e., particle filter). The choice as to which

method performs best is likely to be dataset dependent

and is left for future work.

Last, we note that the direct application of Bayes’s

rule for use in postprocessing is not a new concept. The

idea of leveraging prior climatological information and

updating with NWP information was presented in the

‘‘Bayesian processor of forecasts’’ of Krzysztofowicz

and Evans (2008). The above procedure explicitly il-

lustrates how to extend to themultimodel ensemble case

through the use of the chain rule of probability to

compute the forecast likelihood. Further, this procedure

directly accounts for correlations between forecasts and

is flexible enough to be applied to equally likely en-

semble members, subsets of equally likely members, or

unequally likely members.
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4. Effects of limited training sample size

In this section we will compare BMA to the Bayesian

method of section 3 for different numbers of forecasts

and different training lengths. The question to be an-

swered in this section is whether or not there is some

advantage for small training size to performing re-

gression correction and then weighting each forecast (as

in BMA) when compared to the method of section 3.

The problem we set up will be that of section 3, but we

will now allow for unequally likely forecasts. As in sec-

tion 3, we imagine climatology to be drawn from p(x),

with the property that x is a random draw fromN (1, 1).

We define the forecasts as in appendix B, Eq. (B.1), in

which the forecasts will not be correlated here. (The

same experiments that will be described below were run

for correlations as high as 0.98 and the result that the

Bayesian technique had smaller MSE was also found.)

Two cases will be run, one with unequally likely fore-

casts, and the other with equally likely forecasts. In the

equally likely forecast case, all forecasts will have r 5
0.5. In the unequally likely case, the ith forecast will have

an error variance of ri 5 1/101 (9/10)i/Nf , where we

have chosen this function to bound the forecast quality

between 0.1 and 1 for any number of forecasts. The

BMA algorithm will be implemented as described in

section 3, with a convergence criteria measured as the

change in the weights being less than 1025 or amaximum

number of iterations of 50.

After these calculations have been performed, we

calculate the mean of the predicted distribution and

then calculate the RMSE with respect to the truth for

each technique.Wewill repeat this entire calculation for

105 verification trials for each combination of number of

forecasts and training size. For each of these trials, a

different truth is drawn from climatology and truth

samples are created according to Eq. (2.1). The resulting

average over the 105 verification trials is reported as the

difference between the RMSE of the above-mentioned

Bayesian technique and BMA (Fig. 5). The red line in

the upper-left corner of the figure denotes the region for

which the number of forecasts is equal to or greater than

the training size. Experiments in this region were not

performed, as we do not believe that either technique

can be expected to deliver sensible results when the

number of forecasts (predictors) is greater than the

training size. Positive values in Fig. 5 indicate that BMA

had larger RMSE averaged over the 105 trials than the

Bayesian technique. By scanning both panels of Fig. 5,

one can see that the Bayesian method has smaller

RMSE over a wide range of training sizes and numbers

of forecasts. In fact, only one experiment resulted in a

very weak negative result, and that is for the equally

likely forecast case and a training size of 16 and the

number of forecasts equal to 16. Therefore, Fig. 5 shows

that this difference between the Bayesian result and

BMA’s overweighting of climatology is robust in the

presence of sampling error from limited training size.

5. An application to wave forecast postprocessing

In this section we apply the previously developed

ideas to multimodel forecasts of ocean significant wave

heights (units will be in meters) in the North Pacific

Ocean. All forecasts are obtained using the Wavewatch

III (Tolman 1997, 1999, 2001) global ocean wave model

FIG. 5.MSEdifference betweenBMAand theBayesian particle-

filter-inspired method of section 4. Results from the experiment

with (a) unequally likely forecasts and (b) equally likely forecasts.

The diagonal red line in the upper-left corner of each plot denotes

the region above which the training size is smaller than the number

of predictors, and for which experiments were not performed.
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implemented at two U.S. forecasting centers: Fleet

Numerical Meteorology and Oceanography Center

(FNMOC) and the National Centers for Environmental

Prediction (NCEP). Wind data are obtained from the

Navy Operational Global Atmospheric Prediction Sys-

tem (NOGAPS) (Rosmond, 1992) model and the

Global Forecast System (GFS; Han and Pan 2011),

respectively.

We will use two forecasts as in section 2, one from

each implementation ofWavewatch III. In the following

we consider the 1120-h forecast lead time and obtain

data at 18 3 18 resolution. The verification dataset will be
taken as the FNMOC Wavewatch III significant wave

height analysis. We will postprocess each grid point of

these fields that contain a wave height forecast from

both models and for grid points between 208 and 608N
latitudes and between 1208 and 2708E longitudes. The

training set for this experiment will be a 60-day running

period immediately preceding each day to be post-

processed. We will apply this training set to postprocess

the forecasts for 1–28 February 2012. For example, to

postprocess the forecasts for 1 February we use a

training period from 3 December 2011 to 31 January

2012. The climatological mean and variance for each of

the points in our postprocessing region for the 1 Febru-

ary training set is plotted in Fig. 6.

Wave height forecasts have the property that they are

positive definite, which leads in these forecasts to highly

skewed distributions with long tails. Clearly then both

BMA and the Bayesian techniques must be constructed

to account for this fact. For BMA we will use a power

transformation (following Yeo and Johnson 2000) such

that a variable u is mapped to ‘‘log’’ space through the

following transform:

u/ log(11 u) . (5.1)

This transformation into log space effectively pulls the

tails of the distribution inward toward the center of the

distribution, which results in a training dataset in log

space that is more accurately fit to a Gaussian. We apply

this to all data required by the algorithm, perform the

BMA algorithm, and then map a variable y back to

physical space using

y/ exp(y)2 1. (5.2)

The equivalent BMA kernels in Eq. (2.7) are of the

following form:

g(x j xnc )5
C

n

11 x
exp

"
2
1

2

(Lx2Lxnc )
2

s2

#
, (5.3)

where Lx5 log(11 x) and Lxnc is the nth bias corrected

forecast in log space. We will use this representation to

plot the predicted distributions from BMA.

FIG. 6. The (a) climatological mean and (b) standard deviation across the training set at each

grid point for the period 3 Dec 2011–31 Jan 2012.
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For comparison we will also implement the direct

Bayesian method of section 3. Because the training set

for climatology only has 60 samples, we simply fit the

climatological distribution to a function. To begin, we

must also account for the positive definiteness and long

tails of the wave height distributions in both the forecast

likelihoods and in the climatological distribution. For

the forecast likelihoods we first transform the data as in

Eq. (5.1) and then apply the equations of section 3 to the

transformed data. To map back we simply use the Ja-

cobian of the transformation to obtain forecasts likeli-

hoods of the following form:

p(x1f j x)5
C

1

11 x1f
exp

(
2
1

2

[Lx1f 2H
1
(Lx)]2

R
1

)
, (5.4)

where Lx1f 5 log(11 x1f ). It is important to note that the

regression for the function H1 is done with both the

predictor and the predictand in log space. We choose

here to define the function H1, and H2 below, as the

function that results from linear regression, but note that

if the training set was larger we would prefer to use

quadratic or even cubic polynomial regression. Simi-

larly, if the training set were larger, we could use a

generalized Gaussian (which would fit the first, second,

and fourth moments, rather than just the first and sec-

ond; please see appendix C) and would allow for a better

prediction of the higher moments of the Bayesian pos-

terior. This generalized Gaussian was applied to this

dataset but no statistically distinguishable improvement

was found in the RMS of the mean and we believe that

this is due to the training set being too small to make use

of the information about the tails of the distribution

implied in the generalized Gaussian.

The second forecast’s likelihood is obtained from

p(x2f j x, x1f )5
C

2

11 x2f
exp

8<
:2

1

2

[Lx2f 2H
2
(Lx,Lx1f )]

2

R
2

9=
;,

(5.5)

where Lx2f 5 log(11 x2f ).

Finally, we must construct the climatological distri-

bution. We do this in the same way as the forecast

likelihoods by transforming the wave data into log

space, fitting a Gaussian, and transforming back using

the Jacobian to obtain the following:

p(x)5
C

c

11 x
exp

"
2
1

2

(Lx2Lx)2

P

#
, (5.6)

where we again emphasize that Lx and P are the clima-

tological mean and variance in log- transformed space.

An example of the resulting functions defined above is

plotted in Fig. 7 for the grid point at 508N, 1808. At this

grid point, the GFS forecasts happened to have less

RMSE over the training period and were assigned as f1.

Subsequently, the NOGAPS forecasts were assigned the

variable f2. In Fig. 7a we plot the forecast likelihood

describing the distribution of GFS forecasts given the

verification [e.g., Eq. (5.4)]. By comparing the shape of

this distribution to the one-to-one line, we can see that

the GFS forecast typically overforecasts when the true

wave height is small and underforecasts when the true

wave height is large. Additionally, note that the width of

the distribution increases as the true state being condi-

tioned upon increases. This states that the variance in

the forecast increases as the true state being conditioned

upon increases and is a common property of positive

definite distributions.

Figures 7b and 7c provide the forecast likelihood for

the NOGAPS forecasts given the verification and the

GFS forecasts [e.g., Eq. (5.5)]. In Fig. 7b, we plot f2 as a

function of the verification and evaluated for f1 equal to

the GFS forecast on 1 February. In Fig. 7b, we see that

the variability in the NOGAPS wave height forecast is

significantly larger than that of the GFS forecast, though

it too typically overforecasts when the true wave height

is small and underforecasts when the true wave height is

large. We believe this larger variance in the NOGAPS

forecast is due to the fact that it is being run at a lower

resolution than the GFS model and, therefore, cannot

develop strong-enoughwinds to force the wavemodel to

large wave heights. In Fig. 7c, we plot f2 as a function

of f1 and evaluated for x equal to the verification at

0000 UTC 1 February 2012. This plot shows the implied

correlation between f2 and f1 as seen by the training set,

and shows that there is generally a weak correlation

between them. In summary, these types of plots of the

forecast likelihoods provide a more truly Bayesian way

to perform forecast validation by showing the relation-

ship between the forecasts and the truth and the fore-

casts between each other.

Evaluating Bayes’s rule in Eq. (3.1) requires a prob-

ability density estimation of the climatological dis-

tribution. In Fig. 7d we show the PDF for the

climatological distribution [e.g., Eq. (5.6)]. The histo-

gram in Fig. 7d is composed of the 60 samples at this grid

point and shows that the lognormal fit is a reasonable

choice for such a small number of samples. In Fig. 7e, we

show the resulting Bayesian posterior distribution

evaluated for f2 equal to theGFS forecast on 1 February.

Finally, in Fig. 7f we show the resulting BMA posterior,

which we obtained after using Eq. (5.3) in Eq. (2.5). This

example was chosen because it illustrates one of the

ways that BMA tends to overweight climatology. By
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FIG. 7. The fitting of the likelihoods and climatology for a grid point in the North Pacific (508N, 1808) and evaluated
for 1 Feb 2012. (a) The forecast likelihood for the GFS model given the truth. (b),(c) The forecast likelihood for the

NOGAPS model given the truth and the GFS forecast. (d) The climatological histogram as well as the fit to the

lognormal distribution. The posterior distributions for the (e) Bayesian technique and (f) BMA. The black diagonal

line in some panels is the one-to-one line. The red vertical (horizontal) line in (e) and (f) is the 1 Feb GFS

forecast (truth).
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comparing Figs. 7e and 7f, one can see that the BMA

posterior is generally significantly wider and has the bulk

of its probability mass fixed near the climatological

mean of approximately 4m. Additionally, one can see

that the two kernels in the BMA estimation procedure

become bimodal below a ;2-m wave height, which we

believe is unwarranted.

Further evidence that the BMA procedure is over-

weighting climatology is presented in Fig. 8. In Fig. 8a,

we show the mean squared error (MSE) with respect to

the verification for the 28 days of the verification period

and averaged as a function of latitude. Additionally, we

show theMSE for the same period for the climatological

mean. Note that the direct Bayesian estimation of sec-

tion 4 has a lower MSE than BMA for all latitudes ex-

cept near 608N. Note that near 608N the climatological

variance over the training period is much larger than the

MSE of the climatological mean during the verification

period. Hence, a procedure that erroneously over-

weights climatology will appear to be accurate in the

FIG. 8. Results for the postprocessing of days 1–28 Feb 2012. (a) TheMSEwith respect to the NOGAPS analysis as

a function of latitude. Solid blue (red) is the MSE of the Bayesian technique (BMA). The green solid line is theMSE

of the climatological mean. The dashed lines correspond with the same color choice for the Bayesian technique,

BMA, and climatology except are the corresponding variances. The gray bar along the bottom of (a) denotes those

latitudes for which the difference between the MSE of the Bayesian technique and BMA is statistically significantly

different at 99% using a t test. (b) The MSD between the Bayesian technique (BMA) in blue (red). The solid line is

for the posterior mean difference with respect to the climatological mean; the long dashed line is the posterior mean

difference against the GFS forecast; and the short dashed line is the posterior mean difference against the NOGAPS

forecast. (c) The binned spread plot for the Bayesian technique (blue) and BMA (red) using 10 equally populated

bins. (d) The linear fit through all the data is also plotted as the red (BMA) and blue (Bayesian) lines.
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situation where the climatological variance is larger than

it should be.

To relate this example to section 2, recall that a

comparison of Eqs. (2.3a) and (2.10) resulted in a

stronger weight on the climatological mean for BMA. In

Fig. 8b, we show the mean squared difference (MSD)

between the posterior mean from the procedure in sec-

tion 3 and its three components (climatological mean,

NOGAPS, and GFS forecasts). We repeat these calcu-

lations for the MSD between the posterior mean from

BMA and its three components (climatological mean,

NOGAPS, and GFS forecasts). The point here is that

when the MSD is small this implies that the weight on

that component of the posterior mean estimate must be

large. Similarly, when the MSD is large for a particular

component of the posterior mean estimate then the

weight on that component must be small. Figure 8b

shows that the posterior mean from BMA has a smaller

MSD to the climatological mean than the Bayesian

procedure of section 4. Similarly, Fig. 8b shows that the

posterior mean from BMA has a larger MSD to the two

forecasts than the Bayesian procedure. We feel that this

shows that the theoretical results presented in section 2

can be directly seen in a real application of multimodel

postprocessing.

Last, we show in Figs. 8c and 8d the binned-spread

diagram and the CRPS as a function of latitude for both

techniques. The binned-spread diagram is created from

all the data points across the Pacific and over the 28 days

of verification. We believe that these figures show that

both techniques have a reasonable relationship between

the width of the posterior and their squared errors.

Technically there appears to be some benefit seen in the

CRPS for the direct Bayesian estimationmethod, but we

caution that this may be due solely to the better poste-

rior mean rather than the shape of the PDF. The impact

of the overweighting of climatology on the variance

prediction may be too small to detect in the moments

higher than the first in this example with such a small

training set. Further study of the impact of the size of the

training set on the quality of the higher moments will be

presented in a sequel.

6. Summary and conclusions

We have shown postprocessing techniques like BMA

that first apply a regression correction and then apply a

weighting to ensemble members will systematically

overweight climatology. This problematic treatment of

climatological, or potentially other non-NWP in-

formation, results in an increase in the mean-squared

error of the resulting state estimate. We demonstrated

that this result held in various parameter spaces,

including unequally likely and correlated ensemble

forecasts. We also showed that this result was in-

dependent of the ensemble size and the size of the

training set.

We note that the issue of overweighting climatology

does not arise because of the kernel-density estimation

assumption, but rather because the operation of re-

gression correcting first prematurely fixes the relative

weight to climatology. We present an alternative ap-

proach based on a direct Bayesian estimation. This ap-

proach does not rely on an explicit regression-correction

step, but rather relies on accurately fitting the dataset to

the appropriate distributions required by Bayes’s rule.

Our approach can be considered an application of the

BPF of Krzysztofowicz and Evans (2008), in that this

work extends the BPF method to the ensemble case and

directly accounts for correlation through the chain rule

of probability. In addition, we carefully detail a pro-

cedure to construct likelihoods based on a function that

maps the true state to the forecast. We also present a

particle-filter-based formulation of this procedure. We

demonstrate the ability of this method to extend to non-

Gaussian, distributions through a log transformation, by

application to multimodel ocean significant wave

heights.

We feel that the most powerful application of the

Bayesian technique presented here will be obtained for

larger training sizes than we had available. The study of

how to increase the training set size as well as what size

training set is required to employ higher-order function

fitting procedures will be the subject of future work.
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APPENDIX A

Derivation of Eqs. (2.3a) and (2.3b)

To calculate Eqs. (2.3a) and (2.3b) we first must find

the error variance as a function of the weights:

Q5 h(x
t
2 x

Bayes
)2i5 (12w

1
2w

2
)2P1w2

1r1 1 2w
1
w

2
r

1w2
2r2 1 (12w

1
2w

2
2w

3
)2m2 .

(A.1)

The mean of the posterior distribution will minimize the

variance in Eq. (A.1). To this end we differentiate Eq.

(A.1) with respect to each weight:

1664 MONTHLY WEATHER REV IEW VOLUME 144



dQ

dw
1

522(12w
1
2w

2
)P1 2w

1
r
1
1 2w

2
r

2 2(12w
1
2w

2
2w

3
)m2 , (A.2a)

dQ

dw
2

522(12w
1
2w

2
)P1 2w

2
r
2
1 2w

1
r

2 2(12w
1
2w

2
2w

3
)m2 , (A.2b)
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Setting Eqs. (A.2a)–(A.2c) to zero and solving obtains

the weights in Eqs. (2.4a)–(2.4c). Insertion of the weights

in Eqs. (2.4a)–(2.4c) into Eq. (A.1) returns Eq. (2.3b).

APPENDIX B

The Potential to Overweight Climatology with Many
Ensemble Members

Consider a situation where the ensemble forecasts

were constructed a priori to have no systematic errors,

but a forecaster could not be sure of this property.

Generally, one would expect a more accurate resulting

pdf from aKDMwith a larger ensemble (with associated

narrower kernels) than with a smaller ensemble (with

wider kernels). Is it possible then that the issues with

BMA overweighting climatology demonstrated in sec-

tion 2 were due to the use of a small ensemble (of size 2)?

In this section we demonstrate that the overweighting of

climatology can still occur with large ensembles. This

overweighting is illustrated here with a simple experi-

mental design, one for which we can analytically derive

the correct Bayesian result in the limit of very large

numbers of forecasts. Here, the forecasts are assumed to

be equally likely and have uncorrelated errors. Again, we

fully realize that this is not a realistic model of the errors

for an ensemble of weather predictions, especially short-

lead predictions, where the forecast errors are likely to

have some correlation. This experimental design is

rathermeant to illustrate themathematical property that

KDMs with a prior regression stage do not necessarily

converge to the correct predicted mean as the number of

forecasts approaches infinity.

As in section 2, imagine the climatology for the

physical system under consideration to be drawn from

p(x), with the property that x is a random draw from

N (m, P). We have available Nf unbiased forecasts of

today’s true state, x 5 xt:

x
f
5 x

t
11 e , (B.1)

where e;N (0, R). Here 1 denotes an Nf 3 1 vector

whose entries are 1. The perturbations e have the

property that R is Nf 3 Nf. The diagonal of R will be

constant and denoted as r; off-diagonal elements of R

are zero. Equation (3.1) thus implies that p(xf j x) is

Gaussian with the statistics of the perturbations [i.e.,

N (0, R)].

a. Bayesian solution

A straightforward application of Bayes’s rule would

take the form of Eq. (2.2). By using the information

denoted above in Eq. (B.1) we obtain that p(x j xf ) is

N (xBayes, Q) with

x
Bayes

5m1P1T[1P1T 1R]21(x
f
2m1) , (B.2a)

Q5 (12P1T[1P1T 1R]211)P . (B.2b)

The Sherman–Morrison–Woodbury formula (Golub

and Van Loan 1989, see their section 2.1.3) states that

[1P1T 1R]21 5R21 2
P

r2 1 rPN
f

11T , (B.3)

and when this is used in Eqs. (B.2a) and (B.2b), we

obtain

x
Bayes

5
r

r1PN
f

m1
P

r1PN
f

1Tx
f
, (B.4a)

Q5

 
12

PN
f

r1PN
f

!
P . (B.4b)

Note that the vector product in Eq. (B.4a) is the sum of

the forecasts:

1Tx
f
5 �

Nf

n51

xnf , (B.5)

and that Eq. (B.1) implies, in the sense of probability,

that

lim
Nf/‘

1

N
f

�
Nf

n51

xnf 5 x
t
. (B.6)

Using Eqs. (B.5) and (B.6) in Eqs. (B.4a) and (B.4b)

reveals that the Bayesian solution has the property that

the posterior mean approaches the truth, and the pos-

terior variance vanishes, as Nf /‘.

b. Bayesian model averaging

Recall with BMA that the PDF is constructed with

weighted kernels. Following R05, their Eq. (2):

p(x j x
f
)5 �

Nf

n51

w
n
g
n
(x j xnc ) . (B.7)
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Here the xnc are the statistically postprocessed forecasts.

Note that Eqs. (2.8a) and (2.8b), when applied to the

model of Eq. (B.1), implies that

a
n
5

P

P1 r
, (B.8a)

b
n
5

r

P1 r
m , (B.8b)

when provided with a training set of infinite length; the

coefficients of Eqs. (B.8a) and (B.8b) are identical for all

forecasts because the forecasts are equally likely. This is

precisely the reason we have chosen equally likely

forecasts, as this leads to a case in which we can predict

precisely the regression coefficients and the result of the

EM algorithm (e.g., Fraley et al. 2010). In this case we

know that the weights are all equal to 1/Nf .

Putting these results together allows one to show that

the mean from BMA is

x
BMA

5 �
Nf

n51

w
n
xnc 5

r

P1 r
m1

P

P1 r

1

N
f

�
Nf

n51

xnf . (B.9)

Making use of Eq. (B.6) shows that the BMA mean in

the limit of an infinite number of members in Eq. (B.7)

equals

x
BMA

5
r

P1 r
m1

P

P1 r
x
t
. (B.10)

Therefore, the BMA mean in the limit of an infinite

number of members is a weighted average between the

climatological mean and the truth, while the Bayesian

solution [Eqs. (B.4a) and (B.4b)] is simply the truth in

that limit.

To the extent that this experimental design resembles

possible ensembles, it shows that BMA can substantially

overweight climatology. Note, however, that in this ex-

perimental design, had the regression analysis been ap-

plied to x instead of to the individual members, it can be

shown that the posterior mean would be identical to that

fromBayes’s rule. Therefore, the example of this section

is simply meant to illustrate the behavior in the asymp-

totic limit of a large number of kernels. Recall that the

typical result in KDMs is that the estimated PDF from

KDMs become more accurate as the number of kernels

increases. By contrast, however, we have shown that

increasing the number of kernels (forecasts) does not

eliminate this issue of overweighing climatology because

this issue occurs in BMA because of the initial re-

gression correction fixing the relative weight between

the climatological mean and the forecasts and, as shown

in section 2, this occurs more generally than just the

specific experimental design of this section.

APPENDIX C

Fitting to a Generalized Gaussian

We fit a variable u to a generalized Gaussian by first

calculating its mean u, variance u, and fourth moment F.

The generalized Gaussian is defined as

p(u)5N exp

�
2

�ju2 ujffiffiffi
2

p ffiffiffi
b

p
�a�

(C.1)

whereN is simply the normalization and the parameters

a and b are to be fit to the variance and fourth moment.

We do this using an iterative procedure in which we it-

erate for ai by using the previous ai21 in

g
i
5

G

�
3

a
i21

�2

G

�
52a

i21

a
i21

�
G

�
1

a
i21

� F

u2
(C.2)

to obtain the next update:

a
i
5

5

11 g
i

. (C.3)

Typically, fewer than 20 iterations are required for

convergence. Once a is known bmay be calculated from

b5

G

�
1

a

�

2G

�
3

a

� u . (C.4)

Note that if the distribution of u is a standard Gaussian

such that F5 3u2 then a5 2 and b5 u, which reduces

Eq. (C.1) to a standard Gaussian.

APPENDIX D

Kernel Density Methods for the Climatology

An alternative to fitting climatology to a prespecified

function is to use a kernel density estimation procedure

to represent the climatological pdf. The simplest way to

do this is to use the framework of particle filtering

(Doucet et al. 2000). In the particle filtering framework

we assume that our samples from climatology are

equally likely and have kernels that have zero width (i.e.,

they are theDirac delta function rather than aGaussian,

as in BMA). We emphasize, however, that there is no

requirement that the kernels have zero width; they could

be Gaussians as in the equations for BMA [e.g., Eq.

(2.7)]. The key defining difference between this use of a
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KDM and that of BMA is that BMA is applying kernel

density estimation to estimate the posterior directly,

while under this technique kernel density estimation is

used to represent the prior (climatological) distribution.

This distinction is substantial as the number of kernels in

BMA is equal to Nf, but the number of kernels in this

technique is Nc, and typically we have training sets for

which Nc � Nf . Because KDMs are typically most ac-

curate for large numbers of kernels we view this aspect

as beneficial.

As an example, we assume kernels of zero width

(Dirac delta functions) to represent the climatologi-

cal distribution. This allows one to determine the

probability that the jth sample from the climatolog-

ical distribution, xj, is the true state given the

forecasts:

p
j
5

p(x
f
j x

j
)

�
Nc

j51

p(x
f
j x

j
)

, (D.1)

where Nc is the number of states from climatology that

we have available in our training set. Hence, Eq. (D.1) is

essentially an ‘‘analog’’ approach in which we search the

training set for states from climatology that, asmeasured

by our forecast likelihoods, are likely to be today’s truth.

Note that the probability that the jth sample from the

climatological distribution is the true state given the

forecasts is also the weight for each of our delta function

kernels. Hence, we may calculate the mean of the pos-

terior as

x
b
5 �

Nc

j51

p
j
x
j
. (D.2)

Other moments of the posterior may be calculated

similarly.

In some applications, an ensemble of equally likely

members proves useful. To obtain this from Eq. (D.1),

we sort the xj from smallest to largest and label this new

set as x(j). We then reorganize the pj into the same or-

dering as the x(j) to obtain p(j). The p(j) can now be cu-

mulatively summed to determine the cumulative

distribution function (CDF). The procedure for sam-

pling from a CDF is well known and goes as follows.

Draw a uniformly distributed random number on 0–1.

Next, find the element of the CDF closest to this num-

ber. This element of the CDF corresponds to a particular

x(j) and, therefore, this value is the correct random draw

from the posterior, Eq. (3.1). Repeat this procedure any

number of times to obtain the ensemble of equally likely

members.
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